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Abstract—A mathematical analysis of the steady, dendritic solidification of an aqueous binary solution has
been developed. The energy and solute transport equations were solved using a simple “two-zone” technique.
In this procedure, the coupled energy and solute equations are solved first in a zone near the basal plane, and
then independently solved in a zone near the dendrite tips, to obtain families of temperature, concentration
and dendrite shape profiles in each region. Geometric and thermodynamic matching criteria are employed to
determine the specific temperature, concentration and dendrite shape profile in each region that is mutually
compatible and satisfies the overall boundary conditions. Heat and mass transport phenomena near the
basal plane are analyzed in the present work, while the tip region analysis and matching procedure will be
accomplished in an accompanying paper.

The results of the basal region analysis indicate that solidification at a higher rate (larger basal heat flux)
produces shorter dendrites that are more blunt. A non-dimensional axial similarity variable was found which

describes the temperatures and concentration fields independent of the rate of freezing.

NOMENCLATURE r radial coordinate [m];
spheroidal foci coordinate [m]; R, rate of freezing [m/s];
constant in freezing point equation [K]; L time [s];
linear coefficient in freezing point equation T,  temperature [K];
[K-m?®/mol]; Z,  axial coordinate [m];
quadratic coefficient in freeezing point Z* = Z/L* non-dimensional axial coordinate.

equation [K-m®/mol*];
concentration [mol/m*];

specific heat [N-m/kg-K]; Greck symbols

cubic coefficient in freezing point equation o, thermal diffusivity [mz/ sl;
[K-m*/moP*]; B, constant in paraboloidal equation [m?];
diffusion coefficient of solute in solvent v, linear coefficient in paraboloidal equation
[m?/s]; [m]; . . .
fraction of volume occupied by solid or & quadr.atlc coefficient  in  paraboloidal
liquid; equation;
value of f, at the basal plane; > density [kg/m’].
normalized thermal gradient at the interface
[K/m]; _ _
concentration gradient at the interface Subscripts and superscripts
[g-mol/m*]; ave, average;
heat flux [W/m?]; eut, eutectic;
basal heat flux component due to latent heat f, frontal;
of fusion [W/m?]; I, interface condition;
thermal conductivity [W/m-K]; £, liquid region ;
latent heat of fusion [N-m/kg]; s, solid region ;
characteristic length [m]; sol,  solidification;
liquidus slope [K-m?*/g-mol]; %, free-field condition;
mass-flux [g-mol/m?-s]; o, basal condition ;
energy flux [N-m/m?-s]; eq, equivalent.
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INTRODUCTION

SINGLE crystals grown from the melt of a variety of
metallic and organic systems frequently exhibit a
fibrous sub-structure under a wide range of freezing
conditions. This sub-structure is characterized by
solute-rich striations oriented in the direction of
interface motion separating grains of pure solid.
Experimental observation of the actual solidification
process under these conditions indicates that the solid-
liquid interface is not smooth, but consists of elongated
grains of solid, or dendritest, extending into the liquid
as shown in Fig. 1.

Chalmers [1] first recognized the tendency for
dendritic solidification whenever the conditions for
morphological stability of the planar solid-liquid
interface are violated. These stability conditions de-
termine which state of aggregation, solid or liquid, is
thermodynamically stable in the region just ahead of
the interface. If the liquid tends to remain in the liquid
state, the planar interface is stable, but if it tends
toward the solid state, the planar interface will under-
go a transition to the dendritic morphology.

Chalmers further postulated that a sufficient con-
dition for interface instability is the formation of a
layer of constitutionally supercooled liquid [2] just
adjacent to the interface. Constitutional supercooling
would promote the growth of morphological per-
turbations on the planar interface, leading to the
formation of the more complicated but more stable
dendritic structure. This theory was verified experi-
mentally by Walton et al. [3] and by Tiller and
Rutter [4] on the Pb-Sn alloy system.

Interface stability was recently analyzed more
rigorously by Mullins and Sekerka [5, 6], and
Sekerka [7)]. They calculated the time variation of
sinusoidal perturbations introduced into the shape of
the interface. Whether the perturbations grow or decay
depends on the interactions of the concentration and
temperature fields, on liquid—solid surface energy, and
on interface kinetics. The condition for stability for an
aqueous binary solution is expressed by

1
§(q1+gs)_ch>0 (1)
where
2, dT;
o= dT—!,j=s, L 2
Gk vk, - az 2

Equation (2) represents the “conductivity-weighted”
temperature gradient, and mG, is the gradient in the
liquidus temperature at the interface. Equation (1)
differs from the constitutional supercooling criterion

+These elongations have been named “dendrites” or “cel-
lular dendrites” by various authors. The former term will be
used throughout this paper.

{Dendrite length is defined as the distance from the
foremost point to the basal plane, where the eutectic con-
dition is attained.
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Fi1G. 1. Dendritic solidification geometry.

in that the stabilizing effect of the heat flux behind the
interface is included.

The Mullins—Sekerka stability criterion has been
applied quantitatively to the freezing of aqueous
binary solutions by O’Callaghan et al. [8]. Their results
indicate that the planar interface rapidly becomes
unstable during freezing except at very low freezing
rates or solute concentrations. As discussed above, the
unstable planar interface will transform to the den-
dritic morphology under these conditions.

The present work is an analysis of the heat and mass
transport that accompanies the steady dendritic solidi-
fication of an aqueous binary solution. Our specific
purpose is to calculate the temperature and con-
centration fields and the dendrite shape, length} and
spacing. The problem will be solved using a simplified
“two-zone” scheme. In this procedure, the coupled
equations of solute and energy conservation are solved
for two separate regions, one near the basal plane and
the other near the dendrite tip, to obtain families of
temperature and concentration profiles in each region.
Geometric and thermodynamic matching criteria will
be employed to determine the specific temperature and
concentration profiles in each region that are mutually
compatible and satisfy the overall boundary
conditions.

TWO-ZONE FREEZING MODEL

Consider the steady dendritic solidification geo-
metry shown in Fig. 1. In describing the dendrite shape
and associated transport fields, the most convenient
reference frame is that which is fixed with respect to the
dendrite surface. In this reference frame, if we neglect
the volume change associated with freezing, the entire
field is uniformly moving at the steady solidification
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then, does so by bulk entrapment at the eutectic
condition.

The approximate loci of constant temperature and
concentration in the vicinity of a growing dendrite are
shown in Fig. 3. These loci were constructed by
applying boundary conditions of symmetry, and by
considering two model solidification geometries. First,
if dendrite shape and cross-sectional area were uni-
form, and if the dendrites were infinitely long, then the
loci would be perfect planes. This situation is approx-
imated near the basal plane, where dendrite diameter is
nearly constant. In this zone, the transport fields may
be well approximated as 1-dim. in the axial direction.

As the second model, if we consider isolated freely-
growing dendrites, then the dendrite tip and iso-
potential loci in its vicinity may be accurately des-
cribed as paraboloids of revolution as indicated by
Ivantsov [9] and Bolling and Tiller [10]. Paraboloids
have the characteristic “nose-cone” shape illustrated in
Fig. 3. Thus, the iso-potential loci near the tips of
dendrites growing in close-packed array may be
approximated as paraboloids of revolution. Para-
boloids are 2-dim. surfaces in the circular cylinder
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FiG. 3. Iso-potential loci (constant temperature and concentration) near a growing dendrite.

velocity R.+ The crystals of pure ice extend from the
basal plane (the original planar interface) into the
liquid region, dividing the field into an all-liquid
region, a “mushy” (two-phase) region and a pure solid
region. A typical aqueous phase diagram, shown in
Fig. 2, indicates that solute is completely excluded
from the advancing dendrite, by virtue of the vertical
solidus at 0%, NaCl. This fact is confirmed by recent
estimates of the equilibrium distribution coefficient of
less than 107* [12]. The rejected solute enters the
inter-dendritic liquid which becomes increasingly en-
riched as it approaches the basal plane. The upper limit
on the liquid concentration is the eutectic, which has
been shown to be reached at the basal plane even when
the free-field concentration is a very small fraction of
the eutectic [2]. Any solute that enters the solid phase,

+This volume change would give rise to relative motion
between the solid and liquid regions. Its effect is assumed
negligible.

coordinate system described by

rr= B+ 9Z + ¢Z? (3)

where f, y and ¢ are constants, r is the dendrite radius
(assumed circular in cross-section) and Z is the axial
coordinate fixed with respect to the dendrite surface. If
we transform to the oblate spheroidal coordinate
system defined by

r = a cosh 5 sin 6 4)
and
Z = a sinh 5 cos 6, (5)
the surfaces described by equation (3) become
n = constant for 0 <f<n. (6)

Energy and mass transport near the dendrite tips are
therefore 1-dim. when described in the oblate
spheroidal coordinate system. Analysis of the tip
region transport phenomena is accomplished in an
accompanying paper [11].
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ENERGY AND SOLUTE TRANSPORT NEAR THE DENDRITE
BASE

Transport equations

As discussed above, the iso-potential loci may be
assumed to be planar near the basal plane, with
temperature and concentration varying only in the
axial direction. Consider a differential volume element
of thickness dZ located at position Z, which extends
from the centerline of a dendrite to the midline of the
interdendritic volume (see Fig. 4). At any position Z,
the fraction of cross-sectional area occupied by solid
phase is f{(Z), and the remaining fraction {occupied by
Lquid) is f{Zy =1 — f.(Z).

The first law of thermodynamics applied to this
control volume has three contributions: heat transfer
by conduction, heat transfer by mass motion (con-
vection), and energy generation due to solidification.
The net heat transfer by conduction is found by
summing the input and output terms for the liquid and
solid fractions as follows:

Goong = k J{Z + dZ)%:r-(Z +dZ) + k f{Z + dl)ﬂ:
oz oz

A &T )
X (Z +47) ~ kJ(Z) 5 ()~ KSi2) 35 (2h O

The convective heat flux may be determined by
dividing the freezing field into the following three
sections:

{(a) the region extending from the dendrite center-
line to f{Z + dZ);

(b} the region consisting of df, (which equals df.);

(c) the region extending from f{Z) to the inter-
dendritic mid line.
In sections (a) and (c), the material does not undergo a
change of phase but changes temperature only. The
net convective heat flux in these two sections is given by

Geonl@) = Rp 6 fIZ + dZ) [T(Z + dZ) — T(Z)]
®)

and

deonil€) = Rp, €. f(ZNT(Z + dZ) - T(Z)]. (9)

¥Note that the latent heat of solidification will be con-
sidered separately.
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The material in section (b) however, undergoes a
change of phase. Since p,%, does notequalto p %, itis
necessary to consider the net convective heat flux in
section (b} in two parts. First, the liquid is changed in
temperature from T(Z + dZ) to the freczing tempera-
ture and second the solid is changed in temperature
from the freezing temperature to T(Z). 1 If we represent
the freezing temperature by the average temperature in
dZ given by

Ty =3[T(Z +dZ) + T(Z)] (10)

then the convective energy interaction for section (b) is
given by

Geonb) = Rp 6 Af[T(Z + dZ) - T, ]
+ Rp 6 df [T — T(2)]. (11)
Adding equations (8)—(11) and rearranging, we obtain
deonv = RpEAT(Z + dZ)(Z + dZ) — T(Z)[(Z)}
+ Rp, 6 \T(Z + dZ)f{Z + 4Z) — T(Z)f{Z}}

— R(p, %, — p,%,) s [T(Z + dZ) + T(Z)] df,.
(12)
Finally, the rate of energy generation within the
control volume is given by the rate of liberation of the
latent heat of fusion

dgen = RUUZ + dZ) - f(Z)}p,L. (13)

By assuming that the interface speed is constant, we
may perform a steady state analysis. Therefore, the net
rate of energy transfer into the control volume must be
zero. Adding equations (7), (12) and (13), dividing by
dZ and taking the limit as dZ -0, we obtain

{ksfs + kz(l ‘fs)}T” + {(k\ - kz)f; + Rps(gsfs

+Rp, 61 — BT — Rp Lf =0 (14)
where the superscript prime represents differentation
with respect to Z.

Conservation of solute may be written for the same
control volume, but since solute is completely rejected
from the solid phase, diffusion and convection of solute
occur only in the liquid. The net diffusive mass flux is
given by

) éC éc 7

Mg = DAZ + 4Z) 3 (Z + dZ) = DI(Z) 7 (2)

(15)

The net convective mass flux is given by an expression
similar to equation (12)

Wigony = RFAZ + dZYC(Z + dZ) — RFLZ)C(2).
(16)

In the steady state the net rate of accumulation of mass
in the control volume must be zero. Summing equa-
tions (15) and (16), dividing by dZ and taking the limit
as dZ -0, we obtain

D(1 —f)C"+ {R(1~f)—Df }C" ~(RfHC=0. (17)
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The rate of freezing, R of aqueous solutions and
metallic alloys is a monotonic function of the thermal
supercooling at the interface [1]. Typically, the normal
growth rate near the basal plane in the present case is
on the order of 107*my/s, and the resulting interface
supercooling will be less than 107! K. Although this
quantity is important from a kinetics viewpoint, it is
clearly negligible in terms of energy transport. The
solid and liquid at any axial position are therefore
assumed at thermodynamic equilibrium, with the
temperature—concentration relationship approxi-
mated by

T(Z)=d + bC(Z)+ CHZ) + d'CHZ). (1)

This relationship results from a power series curve fit of
equilibrium freezing point data of the solute under
consideration.

Equations (14) and (17) may be made axially non-
dimensional by using the transformation

z* = Z/L* (19)

where

k)R k,
R[(ps(gs - pz(gz)f: + pz(gz]

Transforming equation (14) to the Z* coordinate
system, we have

l:(ks - ki,)fs + kl [(ps(gs
(ks - kl)f: + k1:| (ps(gs - pl(gi)fs + (pl(gl)

L* (20)

- pz(gz)fg + (px(gz) dZT
dz*?

(ks kz) (Ps(gs - pz%z)f‘s) + pz(gz dfs 1
(ks = kJf2+ k, (0%, — p €N + p,6, dZ*

T - pL ] df.

X

@n

+ s o
dz* [(ps(gs - BN+ p 8, | dz*

Similarly, transformation of the mass transfer equa-
tion yields

d*C
dz*?

k—kfo+k, 1 ]
[D[(pﬁ(gs - px(gy.)f‘s) + pz(gz] (1 —'fs) dz*

XLCJ{ (k,~ k)f2 + K, }
dz* D[(psfgs - pz(gﬂ.)f‘s) + pt(gz]

d,
dz*

X 2. C =0, (22)

Note that the interface speed R does not appear in
either equation (21) or (22). For specific free-field
conditions (C,, T ,), the transport fields and dendrite

+This procedure has been called a “shooting method” in
classical numerical analysis.
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shape are identical for all interface speeds when
described in the Z* coordinate system.

Boundary conditions

Simultaneous solution of equations (18), (21), and
(22) requires the specification of three independent
boundary conditions. The boundary conditions that
are presumed known in the present case are given by

T(Z*=0)=T,, (23)
CZ*->x)=C,, 24)
T(Z*>x)=T,. (25)

Equation (23) is obtained by definition of the eutectic
condition at the basal plane, while equations (24) and
(25) express known free-field conditions.

These boundary conditions, together with the trans-
port equations derived above, comprise a complete
mathematical statement of the basal transport prob-
lem which may be theoretically solved by analysis.
However, in order to numerically solve the complete
set of equations using the “two-zone” solution tech-
nique, it will be necessary to replace equations (24) and
(25) with boundary conditions that apply at the basal
plane. The basal concentration boundary condition
may be replaced by

C

° 1 — =
fs Ceul

(26)

which is obtained by applying conservation of solute to
the entire solidification field, and noting that

C(Z*=0)=C 27)

eut*®

The boundary condition stated by equation (25) will
be met by an iterative procedure which is detailed in
the accompanying paper. Basically, the procedure
consists of assuming a basal temperature gradient
dT/dZ* (which is not known a priori), and then
calculating the resulting free-field temperature T, by
solving the complete set of transport equations.+ If the
calculated T, is not acceptably close to the known
free-field temperature, then an adjustment is made in
the basal temperature gradient and the entire process
is repeated. Obviously, this procedure can be applied
only after the tip region analysis has been developed
and the appropriate stability and matching criteria
applied.

In order to demonstrate the character of the basal
region transport fields, a parameter study will be
accomplished, in which several reasonable values of
basal temperature gradient (and equivalently basal
heat flux) will be assumed. The basal heat flux consists
of two components: the heat flux required to remove
the latent heat of fusion, and the sensible heat flux
needed to change the liquid to the freezing temperature
and subcool the solid to the eutectic condition. It is
possible to calculate a limited range of basal heat fluxes
within which the actual heat flux must lie. This range is
given by '
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Fic. 6. Temperature and concentrations as a function of H =

[H(Z* = 0) — H*}/H.2 .- Both quantities may be read

from the same profiles, using the left and right axes
respectively.

H* <H(Z* = 0)<H* + Hyue (28)
where

which represents the rate of liberation of the latent heat
of fusion, and HZ®%., .. is the maximum value of the
sensible heat flux. This maximum may be estimated by
assuming that the liquid is sensibly cooled to the
eutectic temperature before freezing takes place, and is
given by

H:e“rilxsible = Rp!;(gl(Tx - Teul)' (30)

tTemperature and concentration may be plotted on the
same axes by virtue of equation (18).
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Using material properties for saline with T, =
273.15K in equations {29) and (30), we find that the
maximum sensible heat flux is about 209 of the
solidification heat flux under typical conditions.

Finally, let us define a non-dimensional basal heat
flux given by

H(Z* = 0) — H*
Hmax

sensible

H= (31
This parameter is the ratio of the sensible component
of the basal heat flux to the maximum possible value of
the sensible heat flux. It is clear from equations (28),
(29), and (30} that H < | and that complete removal of
the latent heat of solidification occurs only when H> 0.

RESULTS AND DISCUSSION

The temperature {and concentrationt), temperature
gradient, and dendrite shape profiles resulting from the
numerical integration of the solidification equations is
shown in Figs. 5-7 for the freezing of saline at various
values of basal heat flux. Values of physical constants
are listed in Table 1.

The dendrite shape profiles, shown in Fig. 5 are
characterized by a slightly negative slope near the
basal plane followed by a sharp decrease near the
presumed location of the dendrite tip. The imposed
assumption of planar isotherms and isoconcentrates,
however, is valid only where the dendrite cross-
sectional area does not show strong axial variation, as
shown in Fig. 3. Therefore, the basal steady state
solution accurately describes the temperature and
concentration fields only when the axial gradient of the
dendrite area is not largely negative. This region is
represented by the solid portion of the curves in Fig.
5-7. The dashed portion represents the extrapolation
of the basal region solution. Detailed analysis of
transport phenomena in the dendrite tip region is given
in the accompanying paper [11].

As discussed above, the heat flux at any axial
position has two components: the solidification heat
flux and the sensible heat flux. These components are
given by

HSOl(Z*) = RPs qu(Z*) (32)

020
7t

FiG. 7. Temperature gradient profiles vs A = [H(Z* = 0) — H*}/HT>

7 42 sensibler
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and

H,ensime(Z*) = Rpy%, {[ﬂ - T(Z*][1 - f(2*)]

f(Z*)
+J\
0

1(Z*%)
XL [T(/) - TUd/,. (33)

where T(f,) is the temperature at the axial position
where the solid fraction is f,. The first term in equation
(33) is the energy flux necessary to change the liquid
temperature to the solidification temperature, and the
second is the flux required to sub-cool the solid. Both
the sensible and the solidification components contri-
bute to the axial variation in the heat flux, but the
solidification component is dominant.

The effect of T, and C , on the basal region solution
is by way of equations (25) and (33). The value of f, at
Z* =0 is dictated by the free-field concentration as
shown in equation (26). Increasing the free-field con-
centration decreases the basal dendrite width. How-
ever, it will be shown in the accompanying paper that
the free-field concentration has little effect on the
overall dendrite shape. Increasing T, requires a larger
value of H to maintain a given dendrite shape as given
by equation (33). Note that the overall effect of T and
C, will be considered when the basal solution is
“matched” to the dendrite tip solution in the accom-
panying paper.

The steady state solution predicts that the small
variation in the dendrite cross-sectional area is almost
linear with axial position in the region near the basal
plane (see Fig. 5), and is closely followed by a similar
small decrease in the heat flux, in agreement with
equation (32). The temperature profiles are nearly
linear in this region since the temperature gradient
(proportional to the heat flux) changes by only a small
amount.

The physical significance of the characteristic length
L* may be explained as follows. The numerator of

T, — T(/(,)d/,,} + Rp %6,
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equation (20) is an equivalent thermal conductivity at
the basal plane weighted with respect to the relative
amount of solid and liquid present. The denominator
is the freezing rate R multiplied by an equivalent
specific heat, weighted in a manner similar to the
conductivity. With these definitions, equation (20)
becomes
L* = PKL
R(p%).q
where K., and (p%),, are the equivalent thermal
conductivity and volumetric specific heat as defined
above. With these parameters, the non-dimensional
axial variable becomes

_ ZR(p6),,
P

(34)

zZ* (35)
eq

This combination of variables is the Peclet number
using Z as the characteristic length.

In equation (34), the quantity R(py),, is propor-
tional to the convective heat flux and the quantity
K./L* is proportional to the conductive heat flux. It
can be seen that L* is the equivalent axial conduction
length at which the convective and conductive energy
fluxes are equal. Using the data of Table I and a typical
freezing rate of 10 *m/s, the value of L* is on the order
of 10”3 m. The reader should note from equation (34)
that as the rate of freezing increases, the equivalent
conduction length decreases proportionately.

A unique characteristic of the dendrite shape pro-
files, shown in Fig. 5 is the sudden reduction in
dendrite area within a small interval of Z* The
location of this interval, which depends upon the
imposed basal heat flux H, varies from about Z*
= 0.18to Z* = 0.3. It will be shown in the accompany-
ing paper [11] that the value of Z* at the actual tip of
the dendrite is nearly within the area reduction
interval. Further, since Z was non-dimensionalized
with respect to 1/R [see equation (20)], it follows that
dendrite length is proportional to 1/R.

When the basal heat flux is about H* + 0.7 H™*

sensible’

Table 1. Physical constants for freezing of normal saline

Quantity Symbol Value
Density of solid o, 912 kg/m3
Density of liquid P, 998 kg/m?
Thermal conductivity k, 2.21 N-m/s-m-K
of solid
Thermal conductivity
of liquid k, 0.588 N-m/s-m-K
Specific heat of solid %, 1.92 x 10* N-m/kg-K
Specific heat of liquid %, 4.43 x 10° N-m/Kg-K
Diffusion coefficient D 1.29 x 1072 m?/s
Latent heat of fusion L 0.334 MN-m/kg
Free-field concentration C, 145 g-mol/m?
Eutectic concentration C... 4800 g-mol/m?
Freezing point equation a 273.2K
coefficients
v 3.37 x 107? K-m3/g-mol
c 2.85 x 10~ % K-m®/(g-mol)?
d 4,57 x 107! K-m®/(g-mol)>
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the extrapolation of the basal region solution indicates
that the heat flux goes to zero just as the solid fraction f;
goes to zero. Under this condition, the energy removal
is just sufficient to remove the necessary sensible heat
and latent heat of fusion. Reducing the heat flux below
this “critical” value provides insufficient energy re-
moval for complete solidification.

SUMMARY AND CONCLUSIONS

Equations describing the axial solute and energy
transport during dendritic solidification of aqueous
solutions have been derived. Dimensional analysis of
these equations yielded a non-dimensional axial coor-
dinate in which the transport fields do not depend
upon the rate of growth of the dendrite. Actual
dendrite length is inversely proportional to the rate of
freezing.

The solution of the solute and energy transport
equations depends explicity upon the free-field con-
centration and on the basal heat flux. As the free-field
concentration is increased, the basal dendrite width
(diameter) decreases proportionately, but other geo-
metric factors remain unchanged. The basal heat flux
necessary to remove the latent and sensible heat is
about H* + 0.7HX:., .. Increasing the basal heat flux
beyond this value decreases the dendrite length and
“compresses” the temperature and concentration
fields. Reducing the heat flux below H* + 0.7HI™., .
provides insufficient energy removal for complete
solidification. The influence of the free-field tempera-
ture on the overall solution will be demonstrated in the
following paper.
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ANALYSE DU TRANSFERT DE CHALEUR ET DE SOLUTE PENDANT LA
SOLIDIFICATION D'UNE SOLUTION AQUEUSE BINAIRE—I. REGION PLANE DE BASE

Résumé—On développe une étude mathématique de la solidification permanente, dendritique d’une solution
aqueuse binaire. Les équations de transport d’énergie et de soluté sont résolues d’abord dans une zone proche
du plan de base, puis indépendamment dans une zone proche des extrémités des dendrites pour obtenir des
familles des profils de température, de concentration et de forme de dendrites dans chaque région. On
emploie des critéres géométriques et thermodynamiques pour déterminer les profils spécifiques dans chaque
région qui sont mutuellement compatibles et satisfont les conditions aux limites. Les phénoménes de transfert
de chaleur et de masse prés du plan de base sont analysés ici, alors que le texte suivant concerne la région des

sommets.

Les résultats de 'analyse de la région de base indiquent que la solidification a grande vitesse (grand flux de
chaleur i la base) produit des dendrites courtes qui sont plus émoussées. Une variable adimensionnelle de
similarité axiale est trouvée qui décrit les champs de température et de concentration indépendant de la

vitesse de solidification.



Heat and solute transport—1

EINE ANALYSE DES WARME- UND STOFFTRANSPORTS BEIM ERSTARREN EINER
WASSRIGEN BINAREN LOSUNG--1. BASISFLACHEN-BEREICH

Zusammenfassung—Es wird eine mathematische Analyse des stetigen dendritischen Erstarrens einer
wifrigen bindren Losung entwickelt. Die Energie- und Transportgleichungen des gelosten Stoffes werden
durch Anwendung einer einfachen Zwei-Zonen-Methode gelost. Bei diesem Vorgehen werden die
gekoppelten Energie- und Stofftransport-Gleichungen zuerst fiir eine Zone in der Nihe der Basisflache und
dann unabhingig voneinander fiir eine Zone nahe den Spitzen der Dendriten geldst. Dabei ergeben sich fiir
jedes Gebiet Familien von Temperatur-, Konzentrations- und Dendritenform-Profilen. Geometrische und
thermodynamische Anpassungs-Kriterien, die gegenseitig vertriglich sind und die gesamten Randbedingun-
gen erfiillen, werden zur Bestimmung der spezifischen Temperatur-, Konzentrations- und Dendritenform-
Profile in jedem Gebiet angewandt. In der vorliegenden Arbeit werden die Warme- und Stofftransport-
Phénomene an der Basisfldche analysiert, wihrend die Untersuchung des Gebiets der Dendritenspitzen und
die entsprechende Anpassungs-Prozedur in einem begleitenden Aufsatz ausgeftihrt werden. Die Analyse des
Basisflichengebiets zeigt, daBl die Erstarrung bei gréfieren Boden-Wirmestromdichten kiirzere und
stumpfere Dendriten hervorruft. Eine dimensionlose axiale Ahnlichkeitsvariable wurde gefunden, die die
Temperatur- und Konzentrationsfelder unabhéngig von der Gefrier-Geschwindigkeit beschreibt.

AHAJIN3 TNEPEHOCA TEIJIA U MACCbI PACTBOPEHHOI'O BEIIECTBA [TPH
SATBEPAEBAHHH BOJHOI'O BMHAPHOIO PACTBOPA — 1. OBJIACTh BA3MCHOH
NJIOCKOCTH

Annoraims — [IpoBesnen Matemarnueckuil aHaau3 NPOHECCA CTAUMOHAPHOIO IEHAPHTHOIO 3aTeepie-
BaHWA BOAHOTO OMHADHOrO pacrTBopa. YpaBHEHHE NEPEHOCAa JHEPIrMM M MACCHi PACTBOPEHHOIC Be-
LIECTBA PELIATHCh NPOCTHIM «ABYX30HHBIM» MeTOAOM. [IpH MCIONIL30BAHMU ITOTO MeTold, Ui TOTO
4TOGBI MONYyYMTh PACTIPENE/IEHHS TEMIIEPATYP W KOHUEHTPALMH, a Takxe GOPMbI NEHAPHTHBIX OTBET-
BIICHHH, YpPABHEHMS JHEPIHH H MACCHl PEIAIOTCA CHAYAIA COBMECTHO [T 30HBI, PACHOJIOKEHHON
B6M3H Ga3HCHOM NIOCKOCTH, A 3aTE€M NO OTACALHOCTH AN 30HBL Y ACHAPUTHLIX Bepuind. C nOMOUIBIO
TEOMETPHYCCKHX ¥ TEPMOJAHHAMMYECKMX KPDHTEPHEB CPALUIMBAHMA ONPEIC/IAIOTCE YACHBHBIC Temnepa-
Typa H KOHUEHTPAUHA, a Takke npoduny JeHIPHTHLIX OTBETBICHHH B KAKAOH M3 PAA4 CXOXKHX 30H,
B KOTODHIX BHINOJHAIOTCH OOMIME rpaHuynbie yoroBus. B mepsoit wactu pabortsl aHammsnpyiotcs
ABJICHHS TEMJIO- M MaccomnepeHoca Ha Ga3MCHOM NIOCKOCTH, @ BO BTOPOH — npoueccst B obnactu y
BEPILMHBI JEHAPHUTOB H METOAMKA CPALUMBAHUS.

AHasin3 OasHchOM oO6nacTH nokasas, 4To npH HoJjiee HHTEHCHBHOM 3aTBepaeBaHuM (BoJsbluas
TUIOTHOCTD TEIIOBOTO MOTOKA) IPOHCXOANT 00pa30oBaHHe MeHee BLICOKHX H BoJlee NONOTHX JEHAPHTOB.
Bripenena GeapasMepHas OceBas aBTOMOJAC/bHAN NCPEMEHHAS, ¢ NOMOLIBIO KOTOPOH MOXHO ONHCHI-

BaTh TEMNEPATYPHBIC H KOHUEHTPALHOHHBIE 015 6e3 yyeTa NHTEHCHBHOCTH 34 TBEPIEBAHHA.
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