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Abstract-A mathematical analysis of the steady, dendritic solidification of an aqueous binary solution has 
been developed. The energy and solute transport equations were solved using a simple “two-zone” technique. 
In this procedure, the coupled energy and solute equations are solved first in a zone near the basal plane, and 
then independently solved in a zone near the dendrite tips, to obtain families of temperature, concentration 
and dendrite shape profilesin each region. Geometricand thermodynamic matching criteria are employed to 
determine the specific temperature. concentration and dendrite shape profile in each region that is mutually 
compatible and satisfies the overall boundary conditions. Heat and mass transport phenomena near the 
basal plane are analyzed in the present work, while the tip region analysis and matching procedure will be 
accomplished in an accompanying paper. 

The results of the basal region analysis indicate that solidification at a higher rate (larger basal heat flux) 
produces shorter dendrites that are more blunt. A non-dimensional axial similarity variable was found which 

describes the temperatures and concentration fields independent of the rate of freezing. 

NOMENCLATURE r, radial coordinate [m] ; 

spheroidal foci coordinate [m] ; R, rate of freezing [m/s] ; 

constant in freezing point equation [K] ; t, time [s]; 

linear coefficient in freezing point equation T, temperature [K] ; 

[K-m3/mol] ; 2, axial coordinate [m] ; 

quadratic coefficient in freeezing point z*l = Z/L*, non-dimensional axial coordinate. 

equation [K-m6/mo12] ; 
concentration [mol/m3] ; 
specific heat [N-m/kg-K] ; 

Greek symbols 

cubic coefficient in freezing point equation a, thermal diffusivity [m’/s] ; 

[K-m3/mo13] ; A constant in paraboloidal equation [m’] ; 

diffusion coefficient of solute in solvent 7, linear coefficient in paraboloidal equation 

[m’/sl ; Cm1 ; 
fraction of volume occupied by solid or c, quadratic coefficient in paraboloidal 

liquid ; equation; 

value off, at the basal plane; P? density [kg/m”]. 

normalized thermal gradient at the interface 

W/ml ; 
concentration gradient at the interface Subscripts and superscripts 

[g-mol/m4] ; ave, average ; 
heat flux [W/m’] ; eut, eutectic; 
basal heat flux component due to latent heat f, frontal ; 
of fusion [W/m’] ; 1, interface condition ; 
thermal conductivity [W/m-K] ; F, liquid region ; 
latent heat of fusion [N-m/kg] ; S, solid region ; 
characteristic length [m] ; sol, solidification ; 
liquidus slope [K-m3/g-mol] ; x. free-field condition ; 
mass-flux [g-mol/m’-s] ; 0, basal condition ; 
energy flux [N-m/m*-s] ; eq, equivalent. 

553 



554 MINAEL G. ~‘CALLAGHAN, ERNEST G. CRAVALHO and CHARLES E. HUGGINS 

lNTRODUCTlON 

SINGLE crystals grown from the melt of a variety of 
metallic and organic systems frequently exhibit a 
fibrous sub-structure under a wide range of freezing 
conditions. This sub-structure is characterized by 
solute-rich striations oriented in the direction of 
interface motion separating grains of pure solid. 
Experimental observation of the actual solidification 
process under these conditions indicates that the solid- 
liquid interface. isnot smooth, but consists ofelongated 
grains of solid, or dendrites?, extending into the liquid 

as shown in Fig. 1. 
Chalmers [l] first recognized the tendency for 

dendritic solidification whenever the conditions for 
morphological stability of the planar solid-liquid 
interface are violated. These stability conditions de- 
termine which state of aggregation, solid or liquid, is 

thermodynamically stable in the region just ahead of 
the interface. If the liquid tends to remain in the liquid 
state, the planar interface is stable, but if it tends 
toward the solid state, the planar interface will under- 
go a transition to the dendritic morphology. 

Chalmers further postulated that a sufficient con- 
dition for interface instability is the formation of a 
layer of constitutionally supercooled liquid [2] just 
adjacent to the interface. Constitutional supercooling 
would promote the growth of morphological per- 
turbations on the planar interface, leading to the 
formation of the more complicated but more stable 

dendritic structure. This theory was verified experi- 
mentally by Walton et al. [3] and by Tiller and 
Rutter [4] on the Pb-Sn alloy system. 

Interface stability was recently analyzed more 

rigorously by Mullins and Sekerka [5, 61, and 
Sekerka [7]. They calculated the time variation of 
sinusoidal perturbations introduced into the shape of 
the interface. Whether the perturbations grow or decay 
depends on the interactions of the concentration and 
temperature fields, on liquid-solid surface energy, and 
on interface kinetics. The condition for stability for an 
aqueous binary solution is expressed by 

1 ha + CL) - WC,>0 

where 

2k, 
‘j = k, + k, 

d72, j = S, F. (2) 

Equation (2) represents the “conductivity-weighted” 
temperature gradient, and mG, is the gradient in the 
liquidus temperature at the interface. Equation (1) 
differs from the constitutional supercooling criterion 

tThese elongations have been named “dendrites” or “CA 
Mar dendrites” by various authors. The former term will be 
used throughout this paper. 

$Dendrite length is defined as the distance from the 
foremost point to the basal plane, where the eutectic con- 
dition is attained. 

FIG 1. Dendritic solidification geometry. 

in that the stabilizing effect of the heat flux behind the 
interface is included. 

The MullinsSekerka stability criterion has been 
applied quantitatively to the freezing of aqueous 
binary solutions by O’Callaghan et al. [S]. Their results 
indicate that the planar interface rapidly becomes 

unstable during freezing except at very low freezing 
rates or solute concentrations. As discussed above, the 
unstable planar interface will transform to the den- 
dritic morphology under these conditions. 

The present work is an analysis of the heat and mass 
transport that accompanies the steady dendritic solidi- 
fication of an aqueous binary solution. Our specific 
purpose is to calculate the temperature and con- 
centration fields and the dendrite shape, length1 and 
spacing. The problem will be solved using a simplified 

“two-zone” scheme. In this procedure, the coupled 
equations of solute and energy conservation are solved 
for two separate regions, one near the basal plane and 
the other near the dendrite tip, to obtain families of 
temperature and concentration profiles in each region. 
Geometric and thermodynamic matching criteria will 
be employed to determine the specific temperature and 
concentration profiles in each region that are mutually 
compatible and satisfy the overall boundary 
conditions. 

TWO-ZONE FREEZING MODEL 

Consider the steady dendritic solidification geo- 
metry shown in Fig. 1. In describing the dendrite shape 
and associated transport fields, the most convenient 
reference frame is that which is fixed with respect to the 
dendrite surface. In this reference frame, if we neglect 
the volume change associated with freezing, the entire 
field is uniformly moving at the steady solidification 
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FIG. 2. NaCILH,O phase diagram. Most electrolyte-water 
phase diagrams are very similar to this. 

then, does so by bulk entrapment at the eutectic 
condition. 

The approximate loci of constant temperature and 
concentration in the vicinity of a growing dendrite are 
shown in Fig. 3. These loci were constructed by 
applying boundary conditions of symmetry, and by 
considering two model solidification geometries. First, 

if dendrite shape and cross-sectional area were uni- 

form, and if the dendrites were infinitely long, then the 
loci would be perfect planes. This situation is approx- 

imated near the basal plane, where dendrite diameter is 
nearly constant. In this zone, the transport fields may 
be well approximated as l-dim. in the axial direction. 

As the second model, if we consider isolated freely- 
growing dendrites, then the dendrite tip and iso- 

potential loci in its vicinity may be accurately des- 
cribed as paraboloids of revolution as indicated by 
Ivantsov [9] and Bolling and Tiller [lo]. Paraboloids 
have the characteristic “nose-cone” shape illustrated in 
Fig. 3. Thus, the iso-potential loci near the tips of 
dendrites growing in close-packed array may be 
approximated as paraboloids of revolution. Para- 
boloids are 2-dim. surfaces in the circular cylinder 

FIG. 3. Iso-potential loci (constant temperature and concentration) near a growing dendrite. 

velocity R.t The crystals of pure ice extend from the 
basal plane (the original planar interface) into the 
liquid region, dividing the field into an all-liquid 
region, a “mushy” (two-phase) region and a pure solid 

region. A typical aqueous phase diagram, shown in 
Fig. 2, indicates that solute is completely excluded 
from the advancing dendrite, by virtue of the vertical 
solidus at 0% NaCI. This fact is confirmed by recent 
estimates of the equilibrium distribution coefficient of 
less than 10m4 [12]. The rejected solute enters the 
inter-dendritic liquid which becomes increasingly en- 

riched as it approaches the basal plane. The upper limit 
on the liquid concentration is the eutectic, which has 
been shown to be reached at the basal plane even when 
the free-field concentration is a very small fraction of 
the eutectic [2]. Any solute that enters the solid phase, 

coordinate system described by 

rz = B + yZ + cZ2 (3) 

where /I, y and c are constants, r is the dendrite radius 

(assumed circular in cross-section) and Z is the axial 
coordinate fixed with respect to the dendrite surface. If 

we transform to the oblate spheroidal coordinate 
system defined by 

r = a cash q sin B (4) 

and 

Z = a sinh q cos 8, (5) 

the surfaces described by equation (3) become 

q = constant for 0 50 In. (6) 

Energy and mass transport near the dendrite tips are 
therefore l-dim. when described in the oblate 

tThis volume change would give rise to relative motion spheroidal coordinate system. Analysis of the tip 

between the solid and liquid regions. Its effect is assumed region transport phenomena is accomplished in an 
negligible. accompanying paper [ 111. 
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FIG 4. Differential volume element for derivation of energy 
and solute transport equations. 

ENERGY AND SOLUTE TRANSPORT NEAR THE DENDRITE 
BASE 

Transport equations 
As discussed above, the iso-potential loci may be 

assumed to be planar near the basal plane, with 
temperature and concentration varying only in the 
axial direction. Consider a differential votume element 
of thickness dZ located at position Z, which extends 
from the centerline of a dendrite to the midline of the 
interdendritic volume (see Fig. 4). At any position Z, 
the fraction of cross-sectional area occupied by solid 
phase isf,(Z), and the remaining fraction (occupied by 
liquid) is f,(Z) = I - j&Z). 

The first law of thermodynamics applied to this 

The material in section (b) however, undergoes a 
change of phase. Since p,%$ does not equal to p,Ws, it is 
necessary to consider the net convective heat flux in 
section (b) in two parts. First, the liquid is changed in 
temperature from T(Z + dZ) to the freezing tempera- 
ture and second the solid is changed in temperature 
from the freezing temperature to T(Z).tIf we represent 
the freezing temperature by the average temperature in 
dZ given by 

T,,, = f [T(Z + dZ) + T(Z)] (10) 

then the convective energy interaction for section (b) is 
given by 

q’,,,,(b) = Rp,%dXJ’-(Z + dZ) - T,,,l 
+ R~,QK[l~,,, - W)]. (11) 

Adding equations (8)-( 11) and rearranging, we obtain 

LiW”” = Rp,‘f;,{T(Z + dZ)fJZ + d.Z) - ?-(Z)f,(Z)) 

+ Rp,%:,{T(Z + dZ)f,(Z + dZ) - Gil 

- R(p,CG, - ~$44,) $[T(Z + dZ) + T(Z)1 dL. 

(12) 

Finally, the rate of energy generation within the 
control volume is given by the rate of liberation of the 
latent heat of fusion 

figen = R:L(Z + dZ) - f,(Z)ip,L. (13) 

control volume has three contributions : heat transfer By assuming that the interface speed is constant, we 
by conduction, heat transfer by mass motion (con- may perform a steady state analysis. Therefore, the net 
vection), and energy generation due to solidification. rate of energy transfer into the control volume must be 
The net heat transfer by conduction is found by zero. Adding equations (7), (12) and (13), dividing by 
summing the input and output terms for the liquid and dZ and taking the limit as dZ--+O, we obtain 
solid fractions as follows : 

fkf, + k,(l -0; I-” + 1% - k,K -I- &G&f, 

dcond = k&Z + dZ); (Z + dZ) + kJs(Z + dZ) g 

? n 

x (Z -t dZ) - k&(Z) g (Z) - k&Z) ;; (Z). (7) 

The convective heat flux may be determined by 
dividing the freezing field into the following three 
sections: 

(a) the region extending from the dendrite center- 
line to f,(Z + dZ) ; 

(b) the region consisting of df (which equals df,); 
(c) the region extending from f,(Z) to the inter- 

dendritic mid line. 
In sections (a) and (c), the material does not undergo a 
change of phase but changes temperature only. The 
net convective heat flux in these two sections is given by 

&&) = RP,%&(Z + dZ) [T(Z + dZ) - T(Z)] 

and 
(8) 

4,,,(c) = RP,WJJZ)G’XZ + dZ) - T(Z)]. (9) 

+ Rp,%Jl -#T’ - Rp,Lf: = 0 (14) 

where the superscript prime represents differentation 
with respect to 2. 

Conservation of solute may be written for the same 
control volume, but since solute is completely rejected 
from the solid phase, diffusion and convection of solute 
occur only in the liquid. The net diffusive mass flux is 
given by 

%iiff = of&Z + dZ) ‘2 (Z + dZ) - DfJZ) ‘; (Z). 

(15) 

The net convective mass flux is given by an expression 
similar to equation (12) 

%X3, = Rf,(Z -i- dZ)C(Z + dZ) - Rfe(ZfC(Z). 

(161 

In the steady state the net rate of accumulation of mass 
in the control volume must be zero. Summing equa- 
tions (15) and (16), dividing by dZ and taking the limit 
as dZ-+0, we obtain 

iNote that the latent heat of solidification will be con- 
sidered separately. D(l-f,)C”+fR(l-S,)-Df,f:)C’-(Rf;)C=O. (17) 
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The rate of freezing, R of aqueous solutions and 
metallic alloys is a monotonic function of the thermal 
supercooling at the interface [l]. Typically, the normal 
growth rate near the basal plane in the present case is 
on the order of 10m4m/s, and the resulting interface 
supercooling will be less than lo- ’ K. Although this 
quantity is important from a kinetics viewpoint, it is 
clearly negligible in terms of energy transport. The 
solid and liquid at any axial position are therefore 
assumed at thermodynamic equilibrium, with the 
temperature-concentration relationship approxi- 
mated by 

7-(Z) = a’ + b’C(Z) + c’C’(Z) + d’P(Z). (18) 

This relationship results from a power series curve fit of 
equilibrium freezing point data of the solute under 
consideration. 

Equations (14) and (17) may be made axially non- 
dimensional by using the transformation 

z* = zlL* (19) 

where 

L* z.z 
(k, - k,l.C + k, 

R[(P,% - P,@‘X’ + P,~J ’ (20) 

Transforming equation (14) to the Z* coordinate 
system, we have 

[ 

(4 - k,lf, + k, (P,% - P,~‘,)I-: + (P,‘~J dZT 
(ks - k,lf: + k, I[ ip,W:, - P,@LL + (P,%,) 1 dZ*2 

+ [ 
(k - k,) (psw’, - ~,+ftlfP + ~aw:e df, + 1 

(4 - k,)f: + k, (P,W, - P,~X + ~e+fE dZ* 1 
dT x iiF + - PJ 

(psWs - p,W& + pewt 1 4t 
dZ* = O. (21) 

Similarly, transformation of the mass transfer equa- 
tion yields 

d2C 

-[ 

(k, - W: + k, 1 df, 

dZe2 + 
_~__ 

N(P,% - P,~&C’ + P,%I (1 -.L)dZ* 1 
dC 

x dZ* + 

(ks - W-: + k, 

N(PSK - P,~J.C + PEW21 I 

xdf,c=o 
dZ* ’ 

Note that the interface speed R does not appear in 
either equation (21) or (22). For specific free-field 
conditions (C,, T,), the transport fields and dendrite 

tThis procedure has been called a “shooting method” in 
classical numerical analysis. 

shape are identical for all interface speeds when 
described in the Z* coordinate system. 

Boundary conditions 
Simultaneous solution of equations (18), (21), and 

(22) requires the specification of three independent 
boundary conditions. The boundary conditions that 
are presumed known in the present case are given by 

T(Z* = 0) = T,,,, (23) 

c(z*+‘X) = c,, (24) 

T(Z*+r,) = T,. (25) 

Equation (23) is obtained by definition of the eutectic 
condition at the basal plane, while equations (24) and 
(25) express known free-field conditions. 

These boundary conditions, together with the trans- 
port equations derived above, comprise a complete 
mathematical statement of the basal transport prob- 
lem which may be theoretically solved by analysis. 
However, in order to numerically solve the complete 
set of equations using the “two-zone” solution tech- 
nique, it will be necessary to replace equations (24) and 
(25) with boundary conditions that apply at the basal 
plane. The basal concentration boundary condition 
may be’replaced by 

fp=1+ (26) 
cut 

which is obtained by applying conservation of solute to 
the entire solidification field, and noting that 

c(z* = 0) = c,,,. (27) 

The boundary condition stated by equation (25) will 
be met by an iterative procedure which is detailed in 
the accompanying paper. Basically, the procedure 
consists of assuming a basal temperature gradient 
dT/dZ* (which is not known a priori), and then 
calculating the resulting free-field temperature T, by 

solving the complete set of transport equations.? If the 
calculated T,, is not acceptably close to the known 
free-field temperature, then an adjustment is made in 
the basal temperature gradient and the entire process 
is repeated. Obviously, this procedure can be applied 
only after the tip region analysis has been developed 
and the appropriate stability and matching criteria 
applied. 

In order to demonstrate the character of the basal 
region transport fields, a parameter study will be 
accomplished, in which several reasonable values of 
basal temperature gradient (and equivalently basal 
heat flux) will be assumed. The basal heat flux consists 
of two components: the heat flux required to remove 
the latent heat of fusion, and the sensible heat flux 
needed to change the liquid to the freezing temperature 
and subcool the solid to the eutectic condition. It is 
possible to calculate a limited range of basal heat fluxes 
within which the actual heat flux must lie. This range is 
given by 
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FIG. 5. Non-dimensional dendrite shape profiles as a func- 
tion of R = [H(Z* = 0) - H*]/Hz$b,,. 

FIG. 6. Temperature and concentrations as a function of R = 
[H(Z* = 0) - H*]/HEsible. Both quantities may be read 
from the same profiles, using the left and right axes 

respectively. 

where 

H* < H(Z* = 0) <H* + HzGible (28) 

H* =Rp,Lfl(Z* =0) (29) 

which represents the rate of liberation of the latent heat 
of fusion, and Hz$ible is the maximum value of the 
sensible heat flux. This maximum may be estimated by 
assuming that the liquid is sensibly cooled to the 
eutectic temperature before freezing takes place, and is 
given by 

TTemperature and concentration may be plotted on the 
same axes by virtue of equation (18). 

Using material properties for saline with T, = 
273.15 K in equations (29) and (30), we find that the 
maximum sensible heat flux is about 20% of the 
solidification heat flux under typical conditions. 

Finally, let us define a non-dimensional basal heat 
flux given by 

_H(Z* =0)-H* 
H""". (31) 

sens!bte 

This parameter is the ratio of the sensible component 
of the basal heat flux to the maximum possible value of 
the sensible heat flux. It is clear from equations (28), 
(29), and (30) that fl< 1 and that complete removal of 
the latent heat of solidification occurs only when J? > 0. 

RESULTS AND DISCUSSION 

The temperature (and concentration+), temperature 
gradient, and dendrite shape profiles resulting from the 
numerical integration of the solidification equations is 
shown in Figs. 5-7 for the freezing of saline at various 
values of basal heat Aux. Values of physical constants 
are listed in Table 1. 

The dendrite shape profiles, shown in Fig. 5 are 
characterized by a slightly negative slope near the 
basal plane followed by a sharp decrease near the 
presumed Iocation of the dendrite tip. The imposed 
assumption of planar isotherms and isoconcentrates, 
however, is valid only where the dendrite cross- 
sectional area does not show strong axial variation, as 
shown in Fig. 3. Therefore, the basal steady state 
solution accurately describes the temperature and 
concentration fields only when the axial gradient of the 
dendrite area is not largely negative. This region is 
represented by the solid portion of the curves in Fig. 
5-7. The dashed portion represents the extrapolation 
of the basal region solution. Detailed analysis of 
transport phenomena in the dendrite tip region is given 
in the accompanying paper [l I]. 

As discussed above, the heat flux at any axial 
position has two components: the solidification heat 
flux and the sensible heat flux. These components are 
given by 

H,,,G*) = Rp, LW*) (32) 

FIG. 7. Temperature gradient profiles vs fl = [H(Z* = 0) - H*]/H~;ib,e. 
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and 

Hsensibie(Z*) = Rpi@‘i [TX - '(Z*)l [1 -L(Z*)l 

/,fZ’/ 
+ s T, - W&i/% + Rpsws 

0 

s /,W) 

X 

0 
[T(,Q - T(f,Wy. (33) 

where ‘Tcf,) is the temperature at the axial position 
where the solid fraction isf,. The first term in equation 

(33) is the energy flux necessary to change the liquid 

temperature to the solidification temperature, and the 
second is the flux required to sub-cool the solid. Both 
the sensible and the solidification components contri- 
bute to the axial variation in the heat flux, but the 
solidification component is dominant. 

The effect of T, and C, on the basal region solution 
is by way of equations (25) and (33). The value off, at 
Z* = 0 is dictated by the free-field concentration as 

shown in equation (26). Increasing the free-field con- 
centration decreases the basal dendrite width. How- 
ever, it will be shown in the accompanying paper that 

the free-field concentration has little effect on the 

overall dendrite shape. Increasing T, requires a larger 
value of fl to maintain a given dendrite shape as given 

by equation (33). Note that the overall effect of T, and 
C, will be considered when the basal solution is 
“matched” to the dendrite tip solution in the accom- 
panying paper. 

The steady state solution predicts that the small 
variation in the dendrite cross-sectional area is almost 

linear with axial position in the region near the basal 
plane (see Fig. 5) and is closely followed by a similar 
small decrease in the heat flux, in agreement with 
equation (32). The temperature profiles are nearly 
linear in this region since the temperature gradient 
(proportional to the heat flux) changes by only a small 
amount. 

The physical significance of the characteristic length 
L* may be explained as follows. The numerator of 

equation (20) is an equivalent thermal conductivity at 

the basal plane weighted with respect to the relative 
amount of solid and liquid present. The denominator 
is the freezing rate R multiplied by an equivalent 
specific heat, weighted in a manner similar to the 
conductivity. With these definitions, equation (20) 
becomes 

K 
L* = eq 

N~+3eq 

where K 
conductiG:y 

and (p%‘),, are the equivalent thermal 
and volumetric specific heat as defined 

above. With these parameters, the non-dimensional 
axial variable becomes 

z* = -WP% 
__ . (35) 
Keq 

This combination of variables is the Peclet number 
using Z as the characteristic length. 

In equation (34) the quantity R(pp?,, is propor- 

tional to the convective heat flux and the quantity 
K,,/L* is proportional to the conductive heat flux. It 
can be seen that L* is the equivalent axial conduction 
length at which the convective and conductive energy 
fluxes are equal. Using the data ofTable 1 and a typical 
freezing rate of 10e3m/s, the value of L* is on the order 
of 10M3 m. The reader should note from equation (34) 
that as the rate of freezing increases, the equivalent 
conduction length decreases proportionately. 

A unique characteristic of the dendrite shape pro- 

files, shown in Fig. 5 is the sudden reduction in 
dendrite area within a small interval of Z*. The 
location of this interval, which depends upon the 

imposed basal heat flux R, varies from about Z* 
= 0.18 to Z* = 0.3. It will be shown in the accompany- 
ing paper [l l] that the value of Z* at the actual tip of 
the dendrite is nearly within the area reduction 
interval. Further, since Z was non-dimensionalized 
with respect to l/R [see equation (20)], it follows that 
dendrite length is proportional to l/R. 

When the basal heat flux is about H* + 0.7 HfTJ&,,e, 

Table 1. Physical constants for freezing of normal saline 

Quantity Symbol Value 

Density of solid 
Density of liquid 
Thermal conductivity 

of solid 
Thermal conductivity 

of liquid 
Specific heat of solid 
Specific heat of liquid 
Diffusion coefficient 
Latent heat of fusion 
Free-field concentration 
Eutectic concentration 
Freezing point equation 

coefficients 

Ps 

PE 
k 

k, 
‘Bs 
VL 
D 
L 

CX 
C cut 
a’ 

b 3.37 x 10e3 K-m3/g-mol 
C' 2.85 x 10-s K-m6/(g-mol)’ 
d 4.57 x lo-” K-m9/(g-mol)3 

912 kg/m3 
998 kg/m’ 
2.21 N-m/s-m-K 

0.588 N-m/s-m-K 
1.92 x lo3 N-m/kg-K 
4.43 x lo3 N-m/Kg-K 
1.29 x 10m9 m*/s 
0.334 MN-m/kg 
145 g-mol/m3 
4800 g-mol/m3 
273.2 K 
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the extrapolation of the basal region solution indicates 

that the heat flux goes to zero just as the solid fractionf, 
goes to zero. Under this condition, the energy removal 
is just sufficient to remove the necessary sensible heat 
and latent heat of fusion. Reducing the heat flux below 
this “critical” value provides insufficient energy re- 
moval for complete solidification. 

SUMMARY AND CONCLUSIONS 

Equations describing the axial solute and energy 
transport during dendritic solidification of aqueous 
solutions have been derived. Dimensional analysis of 
these equations yielded a non-dimensional axial coor- 
dinate in which the transport fields do not depend 
upon the rate of growth of the dendrite. Actual 
dendrite length is inversely proportional to the rate of 
freezing. 

The solution of the solute and energy transport 
equations depends explicity upon the free-field con- 
centration and on the basal heat flux. As the free-field 
concentration is increased, the basal dendrite width 
(diameter) decreases proportionately, but other geo- 
metric factors remain unchanged. The basal heat flux 
necessary to remove the latent and sensible heat is 
about H* + 0.7Hp”&,,. Increasing the basal heat flux 

beyond this value decreases the dendrite length and 
“compresses” the temperature and concentration 
fields. Reducing the heat flux below H* + 0.7Hzsi,,,, 
provides insufficient energy removal for complete 

solidification. The influence of the free-field tempera- 
ture on the overall solution will be demonstrated in the 
following paper. 
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ANALYSE DU TRANSFERT DE CHALEUR ET DE SOLUTE PENDANT LA 
SOLIDIFICATION D’UNE SOLUTION AQUEUSE BINAIRE-I. REGION PLANE DE BASE 

RLsumtGOn dbeloppe une ttude mathematique de la solidification permanente, dendritique d’une solution 
aqueuse binaire. Les tquations de transport d’tnergie et de solutt sont rtsolues d’abord dans une zone proche 
du plan de base, puis indlpendamment dans une zone proche des extrtmitCs des dendrites pour obtenir des 
familles des profils de temptrature, de concentration et de forme de dendrites dans chaque r&ion. On 
emploie des crittres glombtriques et thermodynamiques pour dtterminer les profils spkifiques dans chaque 
rlgion qui sont mutuellement compatibleset satisfont lesconditions aux limites. Les phtnom&nes de transfert 
de chaleur et de masse pres du plan de base sont analys& ici, alors que le texte suivant concerne la rCgion des 
sommets. 

Les resultats de I’analyse de la rdgion de base indiquent que la solidification & grande vitesse (grand flux de 
chaleur g la base) produit des dendrites courtes qui sont plus imoussbes. Une variable adimensionnelle de 
similaritC axiale est trouv&. qui dLrit les champs de tempkrature et de concentration indbpendant de la 

vitesse de solidification. 
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EINE ANALYSE DES WARME- UND STOFFTRANSPORTS BEIM ERSTARREN EINER 
WASSRIGEN BINAREN LOSUNG-----I. BASISFLb;CHEN-BEREICH 

Zusammenfassung--Es wird eine mathematische Analyse des stetigen dendritischen Erstarrens einer 
wagrigen bin&en Ldsung entwickeit. Die Energie- und Transportgleichungen des gel&ten Stoffes werden 
durch Anwendung einer einfachen Zwei-Zonen-Methode gel&t. Bei diesem Vorgehen werden die 
gekoppelten Energie- und Stofftransport-Gleichungen zuerst fur eine Zone in der Nahe der Basisflache und 
dann unabhangig voneinander fur eine Zone nahe den Spitzen der Dendriten gel&t. Dabei ergeben sich fur 
jedes Gebiet Familien von Temperatur-, Konzentrations- und Dendritenform-Profilen. Geometrische und 
thermodynamische Anpassungs-Kriterien, die gegenseitig vertraglich sind und die gesamten Rand~dingun- 
gen erfiilien, werden zur Bestimmung der spezifischen Temperatur-, Konzentrations- und Dendritenform- 
Profile in jedem Gebiet angewandt. In der vorliegenden Arbeit werden die Warme- und Stofftransport- 
Phanomene an der Basisflache analysiert, wlhrend die Untersuchung des Gebiets der Dendritenspitzen und 
die entsprechende Anpassungs-Prozedur in einem begleitenden Aufsatz ausgefiihrt werden. Die Analyse des 
Basisflachengebiets zeigt, dab die Erstarrung bei gr(ii3eren Boden-Wlrmestromdichten kiirzere und 
stumpfere Dendriten hervorruft. Eine dimensionlose axiale Ahnlichkeitsvariable wurde gefunden, die die 

Temperatur- und Konzentrationsfelder unabhangig von der Gefrier-Geschwindigkeit beschreibt. 

AHAJIM3 HEPEHOCA TEI-IJIA I4 MACCbI PACTBOPEHHOI-0 BEIIIECTBA HPM 
3ATBEPAEBAHMM BOAHOFO BMHAPHOFO PACTBOPA - I. OBJIACTb BA3MCHOH 

HJIOCKOCTM 

A&usoTaumx - IlpoBeneH MareMaTmiecioi~ aHann npouecca cTausouapworo neunparxoro 3arBepae- 
BaHwl BoAHO~O 65iHapHOrO pacreopa. YpaBHeHne nepeuoca 3HeprKe w MaCCbI paCTBOpeHHOr0 Be- 

U,eCTBa pe"IWIE,Cb npOCTbIM ((ABYX3OHHbIM)) MeTOAOM. nplf I(CnOJIb3OBaHHH 3TOrO MeTOAa. AJTR TOrO 

'lTO6bI IIOJIy'iHl'b pZIIpeAeJleHBR TeMIIepZ%Typ H KOHUeHTpWifi. a TaKme !#OpMbI AeHApHTHbIX OTBeT- 

BJIeHHti, YpaBHeHHR 3HeprHH t( MaCCbI peUIaloTCR CHaYWIa COBMeCTHO A.llA 30Hb1, p%ZnOJIO~eHHOfi 

B6nlisii 6a3HCHOir W,OCKOCTH,a 3aTeM UOOTAeJIbHOCT,, AJISI 30HbI y AeHApMTHbIX BepkUHH. c ROMOUlbM 
reOMeTpAYeCKHX ‘LI TepMOA~HaM~qeCK~X Kp,,TepHeB Cpa~~BaH~~ OFEpeAellSFKITCS YRenbHbIe TeMRepd- 

Tj'pa II KOHUe~rp~U~~,a TaKlKe IlpO@iJlH AeHAp~THbiX OTBeTBneH~~ B KamAOii M3 pSiAa CXOXHX 3OH, 

B KOTOpbIX BbInOJIHSWOTCR o6mxe rpaHWIHbIe YCJlOBWi. B IIepBOfi YdCTM pa6OTbI dHa,W'~HpytOTC% 

rmnemia renno- M Macconepenoca na 6asacuoii nnomocm, a BO BTO~O~~ - npoueccbt a o6nacra y 
BepLUHHbI AeHApllTOB A MCTOAWKI CpaLLWBaHWi. 

AHam 6awcHoii 06JIaCTH llOKa3aJl, 'IT0 npki 6OJlee HHTeHCHBHOM 3aTBepAeEIdHHki (EiO.NbUILiZ4 

WIOTHOCTbTeIlJlOBO~OIIOTOKa)IlpO~CXOAHT 06pa3oeaHHe MeHW BbICOKHXH6onee"O,lO~ltX AeHApHTOB. 

BblBeAeHa 6e3pa3MepHaa OCeBali aBTOMOAe,IbHaB FtepeMeHHaS, C nOMOkUbi0 KOTOpOfi MOXHO OniiCbI- 

BaTb Te~nepaTypHbIe B KOHKeHTpaU~OHH~e nOnR 6e3 YqeTa ~HTeHC~BHOCT~ 3~TBepAeBaH~~. 


